

Economic Value Added (EVA)

Ram Kumar Kakani

Need for EVA

- Previously Discounted Cash Flow (DCF) techniques such as IRR, NPV were there but no tool to measure
 overall corporate performance
 - People concentrated on net-income growth (example East India Company).
- New tools ROA, RONW, etc but these gave wrong signals such as asset being ↓ to have ↑ ROA.
- Introduced EVA to measure true economic performance of a company (a la ABC).

Why existing profitability measures fail?

- They measure only returns [and not cost of generating those returns].
- Profit created on an investment is looked into but not 'surplus profit created'.
- They are usually not implement properly.
- Some are not marketed properly.

How to Calculate EVA?

EVA = (Return on Capital – Cost of Capital) \times (Capital Invested in Project) ALTERNATIVELY EVA = NORAT (Cost of Capital \times Capital)

EVA = NOPAT – (Cost of Capital × Capital) Note: NOPAT is 'Net Operating Profit After Tax'

Calculating EVA ...

'<u>Cost of capital</u>' is the minimum rate of return to compensate investors who are ready to bear the risk of investing in the firm. (WMCC or MARR are also taken)

- It is dependent on company's financial structure, business risk, current interest level, and investors' expectation.
- <u>'NOPAT</u>' is profit derived from a company's operations after taxes, but before financing costs.
- <u>'Amount of capital</u>' is the amount of cash invested in the business, net of depreciation.
- Capital Employed will also include investments on R&D, marketing, and restructuring related.

Calculating EVA ...

- NOPAT is a company's cash generation capability from recurring business activities (disregarding its capital structure)
 - NOPAT = PAT + Total Adjustments Tax Savings on Adjustments
- Cost of Capital (K_c) is a weighted average of two components – (a) cost of debt (K_d); (b) cost of equity (K_e).

$$\rightarrow K_{c} = W_{e}^{*}K_{e} + W_{d}^{*}K_{c}$$

- W_e, W_d in the above above equation are respective weights of individual components.
- Note: Cost of debt (K_d) is always taken post-tax.

Calculating EVA ...

■ Cost of equity (K_e) is taken based on CAPM model → K_e = R_f + β (R_m - R_f)

Where,

- R_f is risk free rate of return (say, t-bill rate)
- β is levered beta of the stock price of the firm (w.r.t. market price).
- $(R_m R_f)$ is also known as market premium
- R_m is the market rate of return on all stocks.
- There are also other ways of calculating K_e

STRATEGIES FOR MAXIMISING E.V.A.

EARN MORE WITHOUT INCREASING CAPITAL

USE LESS CAPITAL HUNT OUT LAZY CAPITAL

INVEST IN HIGH RETURN PROJECTS REDUCE THE COST OF CAPITAL

Understanding EVA

Let us do a case …

- Hence, EVA is a financial technique to measure whether a company is creating economic value over and above the cost of capital of assets employed.
 - i.e., it also measures value created during a period of time through increased margins and profitable deployment of underutilized assets.

Value of a firm in EVA terms (?)

Hint: DCF

- Value of assets in place + value of future growth
- It is EVA of projects in place
- plus

The present value of the EVA of future projects

Utility of EVA

- Making capital budgeting decisions.
- Evaluating/Comparing Performance.
- Value creation potential of strategic and tactical options.
- Acquisition and Divestiture analysis.
- Promoting the company (a la ISO9000) → (a) stocks rise; (b) managers act as owners; and (c) decide managerial compensation.

More Advantages of EVA ...

- EVA in spirit is most closely related to NPV.
 - Avoids problems associated with approaches that focus on percentage spreads i.e., too high ROA or RONW problems.
- It makes top managers responsible for a measure that they have control over.
- It is influenced by all the decisions that managers have to make within a firm (say, investment decision and dividend decisions).

**

Why EVA does not work?

"Don't think that all you need to do is calculate your EVA"

- They don't make it a way of life.
- Most managers implement EVA too fast.
- The boss lacks conviction.
- Managers fuss too much.
- Training gets short shrift.
- Wrong incentive policy.
- Most assets are long-run oriented.

Limitations of EVA or any other technique

- All calculations in WACC (especially cost of equity related) are usually based on ex-post data. Actually they should be ex-ante. To that extent, it is a questionable concept to bank on.
- It is just a financial number i.e., it misses the advantages of ratios [cannot compare EVA of one firm with other firms (say, size of a firm is not taken care of)].
- EVA Vs EPS Vs MVA Vs PBV Ratio

EVA @ Tata Steel in 1990s

INVESTED CAPITAL comprise of.....

Net Fixed Assets less Capital WIP

- Net Current Assets
- Investments
- R & D Expenses
- Bad Debt Reserves added to Receivables

Figs. of '97-98 COST OF DEBT = INTEREST RATE * (1-TAX RATE) = 10.7^* (1- 0.105) = 9.6 %

INTEREST RATE INT. RATE = INTEREST CHARGE (GROSS) / DEBTS X 100 =Rs.465 Crs./Rs.4331Crs X 100 =10.7 %

WACC i.e. THE COST OF DEBT AND COST OF EQUITY TAKEN TOGETHER (AFTER CONSIDERING THE DEBT : EQUITY RATIO OF 1: 0.89) FOR TATA STEEL = 15 %

MAJOR COMPANIES

AIII NUIIIAI NAKAIII, ALKI JAIIISIIEUPUI

BASED ON FIGS AS ON 31ST DEC 1994

	ROIC	WACC	EVA
COCA COLA	35.5%	10.0%	25.5%
GENERAL ELEC.	14.8%	12.9%	1.9%
ORACLE SYSTEMS	37.0%	15.4%	21.6%
MICROSOFT	47.6%	14.4%	33.2%
ABBOTT LAB.	27.1%	11.1%	16%
JOHNSON & JOHNSON	19.6%	12.6%	7%
PHILIP MORRIS	16.3%	10.8%	5.5%
INTEL	28.3%	15.4%	12.9%
		22	

