Quiz Solutions

Solution \#1

C

Solution \#2
A
Solution \#3
C

Solution \#4

A

Solution \#5

C

Solution \#6

D

Solution \#7

D
Solution \#8
$\$ 8,000 \times 2=\$ 16,000$ for the two prior years plus $\$ 8,000$ for the current year.

Solution \#9

Dividends $=(\$ 3.50 /$ share $)(35,000$ shares $)=\$ 122,500$

Retained Earnings (1998)	\$485,000
Net Profits after Taxes (1999)	X
Dividends	122,500
Retained Earnings (1999)	\$565,000

Net Profits after Taxes $=\mathbf{\$ 2 0 2 , 5 0 0}$

Solution \#10

Sales = CGS/(1-GPM) $=105,000 /(1-0.30)=\$ 150,000$
Total Assets = Sales / (Total Asset Turnover)
$=150,000 / 0.50=\$ 300,000$
Net Profits After Taxes $=($ ROA $) \times($ Total Assets $)$

$$
=(0.02) \times(300,000)=\$ 6,000
$$

Solution \#11

A $=15,000 / 4.355=\$ 3,444.32$
Year Payment Principal Interest Balance

0	0	$\$ 15,000$		
1	$\$ 3,444.32$	$\$ 1,944.32$	$\$ 1,500.00$	13,055
2	$3,444.32$	$1,305.57$		

The interest paid in the second year is \$1,305.57

Solution \#12

F = 500,000 (1.276) = \$638,000
$A=638,000 / 6.353=\$ 100,425$
Solution \#13
value of the property upon retirement:
$\mathrm{P}=\$ 90,000, \mathrm{k}=7 \%$, $\mathrm{n}=8$
$F=P(F V I F)=90,000(1.718)=\$ 154,620$
value of the boat upon retirement:

```
P = $200,000 , k=5% , n=8
F = P (FVIF) = 200,000 (1.477) = $295,400
```

additional money needed upon retirement:
$\$ 295,400 \quad \$ 154,620=\$ 140,780$
amount of money needed to deposit at the end of each year:
$\mathrm{F}=\$ 140,780, \mathrm{n}=8, \mathrm{k}=9 \%$, $\mathrm{A}=$?
$A=F / F V I F A=140,780 / 11.028=\$ 12,765.69$

Solution \#14

Asset	Rate of Return Weight (W)	K \times W
A	10\% 0.50	5.00
B	$20 \quad 0.30$	6.00
C	$30 \quad 0.20$	6.00

Expected rate of return $=17$ percent.

Solution \#15

$K=R F+b(K m \quad R F)$
$=0.06+0.5(.12 \quad .06)=.09=9 \%$
The company should expect at least 9 percent return on the stock portfolio.

Solution \#16

$P=(1,250,000900,00050,000) / 7,500=\$ 40$

Solution \#17

a. $\$ 1,000,000-\$ 350,000=\$ 65 /$ share 10,000
b. overvalued
c. market value of the assets is greater than the book value.

Solution \#18

D
Solution \#19
D
Solution \#20
C
Solution \#21
$k a=(.40)(10 \%)+(.10)(15 \%)+(.50)(20 \%)=15.5 \%$
They should reject this project, because the weighted average cost of capital is 15.5 percent and the internal rate of return is 14 percent.
Solution \#22
D
Solution \#23
B
Solution \#24
D
Solution \#25
a.

$$
\begin{array}{cc}
\text { FC } & \$ 1,050,000 \\
Q=-------=----------=75,000 ~ u n i t s ~ \\
\text { P-VC } & \$ 35-\$ 21 \\
\text { FC } & \$ 1,050,000
\end{array}
$$

b. $\mathrm{D}=-----------\quad------------\quad=\$ 2,625,000$
($1-\mathrm{TVC} / \mathrm{TR}$) $(1-\$ 21 / 35)$
$Q(P-V C)$
c. DOL at base $=--------------------$ sales level $\quad Q(P-V C)-F C$ of 100,000
units.

$$
\begin{gathered}
100,000(\$ 35-\$ 21) \\
=-----------------------------100,000(\$ 35-21)-\$ 1,050,000 \\
100,
\end{gathered}
$$

$$
=4.0
$$

Solution \#26

a.

	Structure 1		Structure 2	
Coordinates	EBIT	EPS	EBIT	EPS
	40,$000 ;$	0	24,$500 ;$	0
	50,$000 ;$	0.60	50,$000 ;$	0.77
	60,$000 ;$	1.20	60,$000 ;$	1.07

b. Calculation of indifference point

EPS (Structure 1) = EPS (Structure 2)
(EBIT-\$40,000)(1-0.40)/10,000=(EBIT-\$24,500)(1-0.40)/20,000
If EBIT is expected to be less than $\$ 55,500$, structure 2 will maximize EPS. If EBIT is expected to be greater than $\$ 55,500$, Structure 1 will maximize EPS.

Solution \#27

C
Solution \#28
B
Solution \#29
C
Solution \#30
a.
$\begin{array}{lcc}\text { Year } & \text { EPS } & \text { Dividend per share } \\$\cline { 3 - 3 } \& $\left.\overline{1999} & \$ 3.00\end{array}\right] \$ 1.50$
b.

Year	EPS	Dividend per share
1999	$\$ 3.00$	$\$ 2.00$
1998	2.00	1.25
1997	1.00	.50

Solution \#31

$\mathrm{A}=5,000 / 3.993=\$ 1,252.19$

Year	Payment		Principal	Interest	
	0	$\$ 5,000.00$		Balance	
1	$\$ 1,252.19$	$\$ 852.19$	$\$ 400.00$	$4,147.81$	
2	$1,252.19$		920.37	331.83	$3,227.44$
3	$1,252.19$		993.99	258.20	

The principal paid in the third year is $\$ 993.99$

Solution \#32

a. Asset A

Return x Pr

$10 \% \times 0.30=3 \%$
$15 \times 0.40=6$
$20 \times 0.30=6$

Asset B

Return x Pr
$5 \% \times 0.40=2 \%$
$15 \times 0.20=3$
$25 \times 0.40=10$

Expected Return $=15 \% \quad$ Expected Return $=15 \%$
b. Asset A
$(10 \%-15 \%)^{\wedge} 2 \times 0.30=7.5 \%$
$(15 \%-15 \%)^{\wedge} 2 \times 0.40=0 \%$
$(20 \%-15 \%)^{\wedge} 2 \times 0.30=7.5 \%$
15\%

Standard Deviation of $A=3.87 \%$

Asset B

$$
\begin{aligned}
(5 \%-15 \%)^{\wedge} 2 \times 0.40= & 40 \% \\
(15 \%-15 \%)^{\wedge} 2 \times 0.20= & 0 \% \\
(25 \%-15 \%)^{\wedge} 2 \times 0.40= & 40 \% \\
& 80 \%
\end{aligned}
$$

Standard Deviation of $B=8.94 \%$
c. $C V A=3.87 / 15=0.26 \quad C V B=8.94 / 15=0.60$
d. Asset A; for 15% rate of return and lesser risk.

Solution \#33

ki $=5.6 \%$
$\mathrm{kp}=12.9 \%$

```
kn = 21.34\%
\(k a=(.3)(5.6)+(.05)(12.9)+(.65)(21.34)=16.20 \%\)
```


Solution \#34

a.

Bond issue interest $=10,000,000(0.10)=\$ 1,000,000$
Current interest $=50,000,000(0.10)=5,000,000$
$\$ 6,000,000$

25,000,000

DFL at base level EBIT = ------------------------------ = 1.25
(stock Issue) 25,000,000-5,000,000
b.

Financial Breakeven Point (Bond Issue) $=\$ 6,000,000$

Financial Breakeven Point (Stock Issue) $=\$ 5,000,000$

Solution \#35

a. The maximum dividend per share the firm can pay is:
$\$ 11,600,000 / 2,000,000$ shares $=\$ 5.80 /$ share
b.

| Preferred stock | $\$ 500,000$ | $\$ 500,000$ | $\$ 500,000$ |
| :--- | :---: | ---: | :---: | :---: |
| Common stock | $2,000,000^{*}$ | $2,000,000$ | $2,100,000^{* *}$ |
| Paid in capital | $10,000,000$ | $10,000,000$ | $11,900,000$ |
| Retained earnings | $11,600,000$ | $8,600,000$ | $9,600,000$ |
| | | | |
| Total S.E. | $\$ 24,100,000$ | $\$ 21,100,000$ | $\$ 24,100,000$ |

* (4,000,000 shares at \$0.50 par)
** (2,100,000 shares at \$1 par)
c. 1) \$10 / share

2) $\$ 19.05 ; 2,000,000$ shares $x \$ 20 /$ share $=\$ 40,000,000$
market value
2,100,000 shares x ? /share $=\$ 40,000,000$ market value
