
Calculating the Incremental Cash Flows

- Initial cash outflow -- the initial net cash investment.
- Interim incremental net cash flows -- those net cash flows occurring after the initial cash investment but not including the final period's cash flow.
- Terminal-year incremental net cash flows -- the final period's net cash flow.

Initial Cash Outflow

Incremental Cash Flows

a)	Net incr. (decr.) in operating revenue
	less (plus) any net incr. (decr.) in
	operating expenses, excluding depr.
b)	- (+) Net incr. (decr.) in tax depreciation
C)	 Net change in income before taxes
d)	- (+) Net incr. (decr.) in taxes
e)	 Net change in income after taxes
f)	+ (-) Net incr. (decr.) in tax depr. charges
g)	= Incremental net cash flow for period

Terminal-Year Incremental Cash Flows

a)		Calculate the incremental net cash
		flow for the terminal period
b)	+ (-)	Salvage value (disposal/reclamation
		costs) of any sold or disposed assets
C)	- (+)	Taxes (tax savings) due to asset sale
		or disposal of "new" assets
d)	+ (-)	Decreased (increased) level of "net"
		working capital
e)	=	Terminal year incremental net cash flow

Operating cash flows simplified

• We can say that $\triangle OCF = (\triangle R - \triangle E - \triangle D)(1-t) + \triangle D - \triangle NWC$

Risk and Managerial Options in Capital Budgeting

Risk and Managerial Options in Capital Budgeting

- The Problem of Project Risk
- Total Project Risk
- Contribution to Total Firm Risk: Firm-Portfolio Approach
- Managerial Options

An Illustration of Total Risk (Discrete Distribution)

ANNUAL CASH FLOWS: YEAR 1 PROPOSAL A

Chata	Due be de 1995 -	Cook Flow	
Deep Recession		\$ -3,000	
Mild Recession		1,000	
Normal		5,000	
Minor Boom		9,000	
Major Boom		13,000	

Summary of Proposal A

The **standard deviation** = (14,400,000) = **\$3,795**

SQRT

The expected cash flow = \$5,000

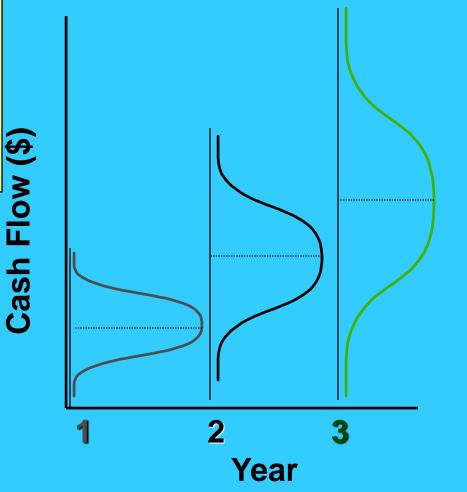
An Illustration of Total Risk (Discrete Distribution)

ANNUAL CASH FLOWS: YEAR 1 PROPOSAL B

<u>State</u>	<u>Probability</u>	Cash Flow	
Deep Recession .05	\$	-1,000	
Mild Recession	.25	2,000	
Normal	.40	5,000	
Minor Boom	.25	8,000	
Major Boom	.05	11,000	

Summary of Proposal B

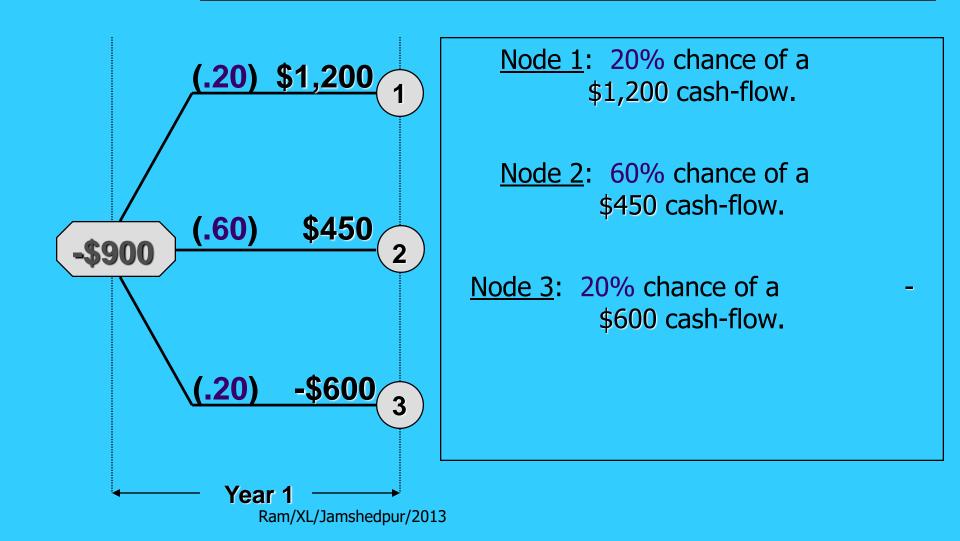
The standard deviation = SQRT (8,100,000) = \$2,846

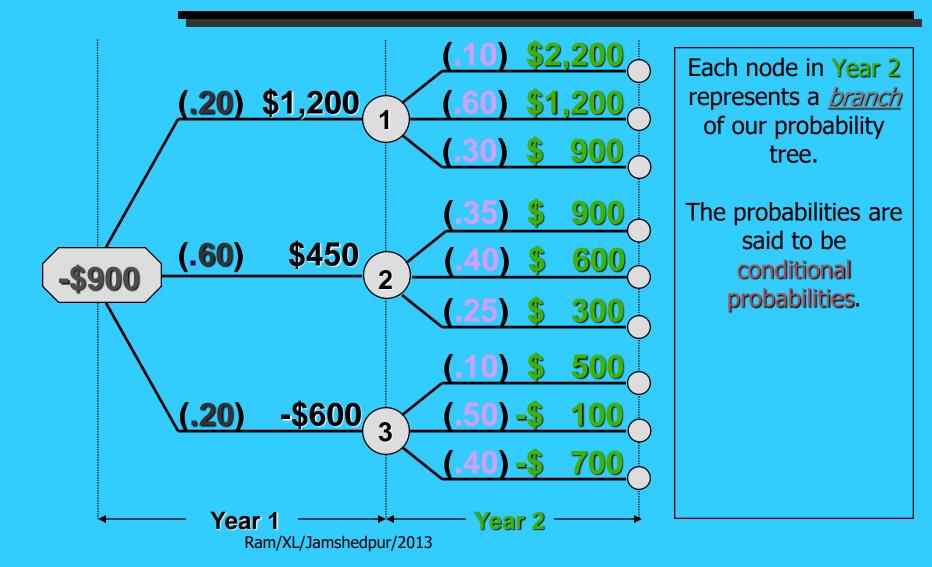

The expected cash flow = \$5,000

The standard deviation of Proposal B < Proposal A. (\$2,846 < \$3,795)

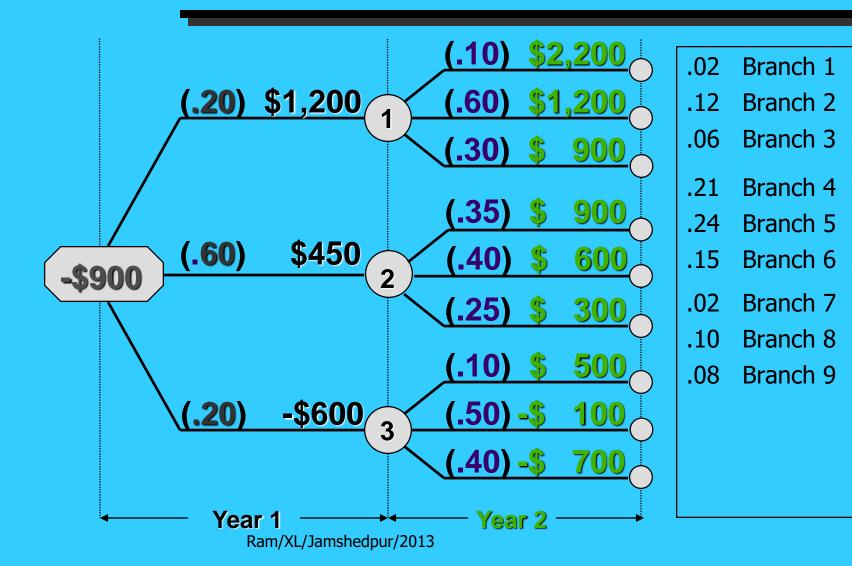
Total Project Risk

Projects have risk that may <u>change</u> from period to period.


Projects are more likely to have <u>continuous</u>, rather than discrete distributions.

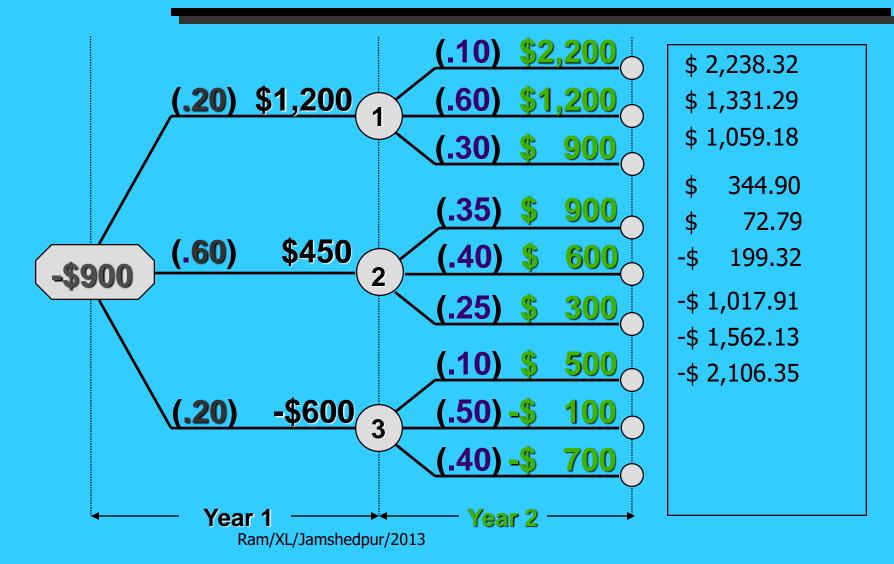


A graphic or tabular approach for organizing the possible cash-flow streams generated by an investment. The presentation resembles the branches of a tree. Each complete branch represents one possible cash-flow sequence.


Basket Wonders is examining a project that will have an **initial cost** today of **\$900**. Uncertainty surrounding the first year cash flows creates three possible cash-flow scenarios in Year 1.

Joint Probabilities [P(1,2)]

Project NPV Based on Probability Tree Usage


The probability tree accounts for the distribution of cash flows. Therefore, discount all cash flows at *only* the **risk-free** rate of return.

$$\overline{\mathbf{NPV}} = \sum_{i=1}^{z} (\mathbf{NPV}_{i})(\mathbf{P}_{i})$$

The NPV for branch i of the probability tree for two years of cash flows is

$$NPV_{i} = \frac{CF_{1}}{(1 + R_{f})^{1}} + \frac{CF_{2}}{(1 + R_{f})^{2}} - ICO$$

NPV for Each Cash-Flow Stream at 5% Risk-Free Rate

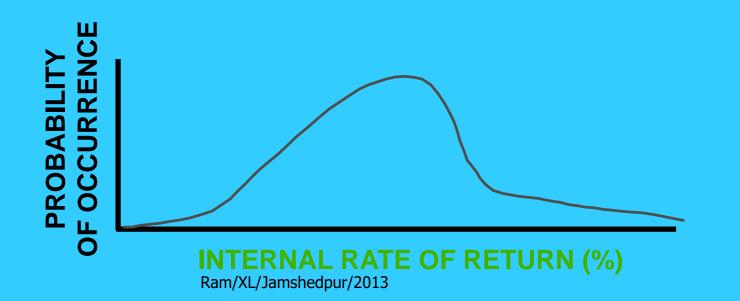
Calculating the Expected Net Present Value (NPV)

	IPV _i	P(1,2)	NPV _i * P(1,2) \$ 44 77
Branch 1 Branch 2 Branch 3 Branch 4 Branch 5 Branch 6 Branch 7 Branch 7 Branch 8-\$ 1,5 Branch 9	\$ 2,250.52 \$ 1,331.29 \$ 1,059.18 \$ 344.90 \$ 72.79 -\$ 199.32 -\$ 1,017.91 562.13 -\$ 2,106.35	.12 .06 .21 .24 .15 .02 .10 .08	\$159.75 \$ 63.55 \$ 72.43 \$ 17.47 -\$ 29.90 -\$ 20.36 -\$156.21 -\$168.51
Expected Net Present Value = -\$ 17.01			

Summary of the Decision Tree Analysis

The standard deviation = (\$1,031,800) = \$1,015.78

SQRT


The expected NPV = -\$ 17.01

Simulation Approach

An approach that allows us to test the possible results of an investment proposal before it is accepted. Testing is based on a model coupled with probabilistic information.

Simulation Approach

Each proposal will generate an **internal rate of return**. The process of generating many, many simulations results in a large set of internal rates of return. The **distribution** might look like the following:

