KEY VALUATION INPUTS-THEIR ESTIMATION

RAM KUMAR KAKANI & SANTOSH SANGEM XLRI JAMSHEDPUR

Valuation Inputs

Value always from Investor Perspective – Current & Potential

- Value a function of
 - ► Investor Opportunity Cost
 - Risk => Rate of Return
 - ▶ Growth
 - Expected Future Benefits
 - ► Cash Flows
 - ► Earnings

Investors and Risk!

- Two broad categories of risks
 - ► Firm-Specific
 - Risks that affect all firms (systematic risk)
- Risk from perspective of investors
 - Equity Investors
 - Controlling/Managing Investors
- Risk assessment not necessarily same for all investors
 - ▶ If the investors profile is very wide spread and diverse then ... ?
 - Risk from point of view of "Marginal Investor"
- We assume that the Marginal investor is well diversified

Risk & Investor Opportunity Cost

- Equity Investors
 - Cost of Equity
- Controlling/Managing Investors
 - Weighted Average Cost of Capital
- Cost of Equity
 - Requires estimation
 - CAPM
 - Market Model
 - ▶ Unlisted Companies?
- Cost of Debt
 - Listed Debt
 - Unlisted Debt

- The Capital Asset Pricing Model
- ► Cost of Equity = R_f + Equity Beta ($E(R_m) R_f$)
 - Beta a measure of systematic risk relative to index
 - ▶ In other words, risk premium relative to index
 - Choice of Risk Free Rate??
- ► If, 360D T-bill rate is 6.99% and 10-year T-bond rate is 7.24% ... what should we take?
 - Government Securities in Domestic Currency as risk free assets
 - In India, Scheduled Commercial Bank FD's also as risk free assets
 - Risk-Free Rate in same currency as expected benefits
 - Same maturity as planned investment horizon

- The Market Model
 - ► Cost of Equity = α + Equity Beta (E(R_m))
 - More widely used in Practice to estimate CAPM Beta
 - Computationally less intensive
- Some further considerations
 - Estimating Expected Market Return
 - ► Long Run Historical Average?
 - ► Long Run Nominal GDP Growth rate as Maximum? (Piketty)
 - Significant changes in firm characteristics (e.g. Tata Steel)
 - ▶ Use shorter period for estimating betas
 - Review betas on a periodic basis
 - Unlisted Companies
 - ▶ Bottom-up Approach
 - ► Compute Betas for similar listed firms
 - Adjust for Financial Leverage (if using CAPM)
 - ► Adjust for Financial Leverage and Operating Leverage (if using Market Model)

- Adjusting for Financial Leverage
 - ▶ Use of Debt-Equity Ratio
 - Arr B_L = B_U(1 + (1 t)(D/E)
 - Debt-Equity Ratio in Book Value or Market Value
 - Use marginal tax rate
- Adjusting for Operating Leverage
 - Not widely done
 - Relevant if significant differences in asset intensiveness in industry
 - ▶ Asset intensiveness measured by Fixed Asset Turnover Ratio or Total Asset Turnover Ratio
 - ► Higher asset intensiveness and higher proportion of fixed costs
 - ► Fluctuations in profit margins magnified with volume changes
 - Degree of Operating Leverage (DOL) = Percentage Change in Operating Profit / Percentage Change in Revenue
 - ightharpoonup B_{OL} = B_{ZOL} * DOL

- Steps to adjust for Leverage
 - First compute unlevered Beta adjusted for financial leverage
 - Use unlevered Beta value for B_{OL}
 - Compute Zero DOL Beta (B_{ZOL})
- Computing Beta for unlisted firms
 - Identify Target DOL and Target Financial Leverage
 - Target DOL from Earnings/Cash Flow Forecasts
 - Adjust Zero DOL Beta (B_{ZOL}) for Target DOL to compute B_U
 - Adjust for Financial Leverage to compute B_L
 - Use as input for CAPM
 - Why this approach??

- Using Dividend Discount Model
 - $V_0 = D_1/(K_e-g)$
 - $V_0 = E_1/(K_e-g)$
 - $ightharpoonup K_e = (D_1/V_0) + g$
 - $ightharpoonup K_e = (E_1/V_0) + g$
 - Use Dividends based version when dividend payout ratio is high
- Other approaches to computing cost of equity/betas
 - Arbitrage Pricing Model, Fundamental Factors Model
 - Additional benefits vs Additional efforts?
 - Estimation for all methods based on historical data

Cost of Debt & WACC

- WACC more relevant for Controlling/Managing Investors
 - New Entities
 - Mergers & Acquisitions
 - Stake Sale
- Inputs for WACC
 - Cost of Equity
 - Cost of Debt
- Cost of Debt
 - ▶ If debt securities listed, use most recent yield
 - If debt securities not listed
 - ▶ Use interest rate contracted on most recent borrowing
 - ► Use average interest cost (Interest paid/Total Debt)
 - Post-Tax Cost of Debt = Pre-Tax Cost of Debt *(1-tax rate)
- WACC = Cost of Equity * (Equity/Total Capital) + Cost of Debt *(Debt/Total Capital)
 - ▶ Should we use market values or book values of Debt & Equity?

- The most difficult problem in valuation
 - Value usually most sensitive to growth rate forecasts
 - ▶ Growth rate must be grounded in firm, industry, and macroeconomic trends
- Use of Historical Growth Rate?
 - Size of firm
 - ► Financial & Operating Characteristics of firm
 - Arithmetic Mean or Geometric Mean of Growth Rate
- Sources of Information for Growth Rate Estimation
 - Financial Statements
 - Management forecasts
 - Analyst Forecasts
 - Public & Private Information
- Confidence on Analyst Forecasts
 - Number & Quality of Analysts Following
 - Extent of Disagreement between Analysts
 - Frequency of Information updates
 - Use average growth rate forecast

- Growth rate using Dividend Discount Model (DDM)
 - Dividend Discount Model an extremely flexible tool
 - $V_0 = D_1/(K_e-g)$
 - $V_0 = E_1/(K_e-g)$
 - Underlying assumption of constant dividend payout ratio
 - ► Growth Rate (g) = Retention Ratio * ROE
 - Underlying assumption??
- Computation of Market Implied Growth Rate
 - ▶ Using D₁ & E₁
 - Analyst or Management Forecasts of D₁ & E₁
 - ► Growth Rate (g) = $K_e (E_1/V_0)$
 - ▶ If forecasts unavailable, then derive using most recent earnings/dividends
 - Growth Rate (g) = $\{K_e (E_0/V_0)\}/\{1 + (E_0/V_0)\}$

- Drivers of Growth Rate in DDM
 - Retention Ratio
 - Return on Equity
 - Return on Equity Drivers through Du-Pont Analysis
 - Useful in validating feasibility of external growth estimates
- Shortcomings of DDM
 - Cannot be used if zero dividends or earnings negative
 - Only a short-term to medium-term growth rate
 - Long-term growth rate for valuation = Long-term nominal GDP growth rate

- Other methods to arrive at growth rate forecast
 - ▶ Top-Down approach
 - Macroeconomic Forecast =>Industry Forecast=>Competitive Position Analysis => Growth Forecast
 - ▶ Useful for short-term to medium term forecasts
 - ► Maturity Stage of Industry
 - Declining Long-Term Growth Rate < Nominal GDP growth rate</p>
 - ▶ Mature Long-Term Growth Rate > Nominal GDP growth rate
 - Problems with Introduction and Growing stages
 - Introduction and Growing Stages
 - ▶ Use 3-stage and 2- stage growth models
 - ► Two Stage Growth: High Growth Rate -> Stable Growth
 - ► Three Stage Growth: High Growth Rate -> Declining Growth Rate -> Stable Growth
- Next step to identify risk factors for growth
 - Develop a range of growth rate scenarios

- Future Benefits
 - Cash Flows
 - Earnings
- Cash Flows
 - Dividends
 - Cash Flows to Equity / Cash Flows to Firm
 - Free Cash Flows to Equity (FCFE)
 - Free Cash Flows to the Firm (FCFF)
- When to use?
 - Dividends => Where dividend payout ratio is high, Valuation of Equity
 - Earnings => Constant, Low, or Zero Dividends, Valuation of Equity
 - FCFE => Low Dividends or Negative Earnings, Stable Leverage, Valuation of Equity
 - FCFF => Negative FCFE, Valuation of Firm, Changes in Leverage over time
 - Earnings most frequently used

- FCFF = Cash Flow from Operating Activities before tax *(1-tax rate) Depreciation
 Assumption
- ► FCFE = FCFF Interest Payments (1-tax rate) Debt Repayment + Proceeds from Fresh Debt
- Tax Rate = Marginal Tax Rate
- Cash Flow from Operating Activities before Tax = Operating Profit + Depreciation & Amortization – (Increase in Non-Cash Net Working Capital)
- Most books prefer to use capex spending instead of depreciation
- FCFE the maximum cash flow that can theoretically be paid out to shareholders or reinvested for growth
- FCFF the maximum cash flow that can theoretically be paid out to all providers of capital or reinvested for growth

- Increase in Non-Cash Net Working Capital
 - Required Non-Cash Net Working Capital = Sales / Net Working Capital Turnover Ratio
 - ▶ Non-Cash Net Working Capital at end of each year during forecast horizon
 - Net Working Capital Turnover Ratio from Industry Average, Management Targets, Historical Average
- Depreciation to be adjusted for planned capex
 - Use Fixed Asset Turnover Ratio
 - Result in constant fixed asset growth rate (same growth rate as sales)
- Problems with using Earnings
 - Quality of Earnings
 - Corrections for Earnings Management

- Computing Free Cash Flows
 - Start with Sales Forecast
 - Compute Depreciation
 - Calculate Operating Profit using Target Operating Profit Margin
 - Calculate Non-Cash Net Working Capital Requirement using

Some Formulae

Two Stage DDM

$$\left\{ rac{d[1+g_1]}{k-g_1} \left\{ 1 - \left[rac{1+g_1}{1+k}
ight]^n
ight\} + rac{d[1+g_1]^{
m n}[1+g_2]}{rac{k-g_2}{[1+k]^n}}
ight\}$$

Here,g1= Growth rate during high growth phase.g2= Growth in constant growth phase after n. n = Length of high growth phase.Assume g1<>k and g2< k,d=dividend for the next year.

Three Stage DDM

$$rac{d}{k-g_2}+\left[1+g_2+rac{n_1+n_2}{2}
ight]\left[g_1-g_2
ight]$$

here,n1= Length of high growth phase.n2= Periods until constant growth phase.n2= n1+ length of transition phase.g1= Growth rate during high growth phase.g2= Growth in constant growth phase after n.d=dividend for the next year.